这是数学模型板块的第二篇推文,上篇介绍了几种离散型分布,从本篇开始介绍连续型概率分布。假定某个连续型分布的取值范围为[a, b](a、b可以取无穷),则其概率密度函数与概率分布函数的关系:
x) = {int^b_{x}f(t)dt}" data--type="block-" style=" text-align: ; : auto; ">
1 均匀分布
如果在[a, b]范围内任意相同间隔长度内的概率是等同的指数分布,那么X就服从均匀分布( ),记为。
均匀分布在取[a, b]间的任意值的概率密度函数都是。
stats中的相关函数有:
dunif(x, min = 0, max = 1, log = FALSE)
punif(q, min = 0, max = 1, lower.tail = TRUE, log.p = FALSE)
qunif(p, min = 0, max = 1, lower.tail = TRUE, log.p = FALSE)
runif(n, min = 0, max = 1)
# 概率密度
dunif(seq(1,11,0.5), 1, 11)
## [1] 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
## [20] 0.1 0.1
# 已知X求累积概率
punif(seq(1,11,0.5), 1, 11)
## [1] 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70
## [16] 0.75 0.80 0.85 0.90 0.95 1.00
# 已知累积概率求X
qunif(seq(0,1,0.05), 1, 11)
## [1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
## [16] 8.5 9.0 9.5 10.0 10.5 11.0
# 生成符合均与分布的随机数
runif(10, 1, 11)
## [1] 6.302010 5.699884 9.597925 9.065036 1.272223 7.165098 6.938233 3.395326
## [9] 7.864294 5.044557
2 指数分布
在泊松过程中(事件在单位时间内发生次数的数学期望恒定,即),则事件第一次发生所需要的时间长度符合指数分布( ),记为。
指数分布的概率密度函数:
0,\0 qquad x \end{array}right." data--type="block-" style=" text-align: ; : auto; ">
指数分布具有“无记忆性”,即
s)=P(x>T+s | t>T)" data--type="block-" style=" text-align: ; : auto; ">
stats中的相关函数有:
dexp(x, rate = 1, log = FALSE)
pexp(q, rate = 1, lower.tail = TRUE, log.p = FALSE)
qexp(p, rate = 1, lower.tail = TRUE, log.p = FALSE)
rexp(n, rate = 1)
概率密度函数关于的变化图象:
curve(dexp(x, 0.1), 0, 50, col = rgb(0.1, 0, 0.9), lwd = 2)
for(i in seq(0.2, 0.9, 0.1)) {
curve(dexp(x, i), 0, 50, col = rgb(i, 0, 1-i), lwd = 2, add = T)
}
legend("topright", legend = seq(0.1, 0.9, 0.1), lty = 1, xpd = T,
col = c(rgb(seq(0.1, 0.9, 0.1), 0, 1-seq(0.1, 0.9, 0.1))),
title = expression(lambda), lwd = 2)
3 正态分布
正态分布( ),又称高斯分布( ),记为。
正态分布的概率密度函数:
正态分布的性质:
stats中的相关函数有:
dnorm(x, mean = 0, sd = 1, log = FALSE)
pnorm(q, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)
qnorm(p, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)
rnorm(n, mean = 0, sd = 1)
概率密度函数关于的变化图象:
curve(dnorm(x, 0, 0.1), -1, 1, col = rgb(0.1, 0, 0.9),
lwd = 2, n = 400)
for(i in seq(0.2, 0.9, 0.1)) {
curve(dnorm(x, 0, i), -1, 1, col = rgb(i, 0, 1-i),
lwd = 2, add = T, n = 400)
}
legend("topright", legend = seq(0.1, 0.9, 0.1), lty = 1, xpd = T,
col = c(rgb(seq(0.1, 0.9, 0.1), 0, 1-seq(0.1, 0.9, 0.1))),
title = expression(sigma), lwd = 2)
4 对数正态分布
如果服从正态分布,则服从对数正态分布(Log )。
对数正态分布的概率密度函数:
数学期望和方差:
stats中的相关函数有:
dlnorm(x, meanlog = 0, sdlog = 1, log = FALSE)
plnorm(q, meanlog = 0, sdlog = 1, lower.tail = TRUE, log.p = FALSE)
qlnorm(p, meanlog = 0, sdlog = 1, lower.tail = TRUE, log.p = FALSE)
rlnorm(n, meanlog = 0, sdlog = 1)
概率密度函数关于的变化图象:
curve(dlnorm(x, 0, 0.1), 0, 2, col = rgb(0.1, 0, 0.9),
lwd = 2, n = 400)
for(i in seq(0.2, 0.9, 0.1)) {
curve(dlnorm(x, 0, i), 0, 2, col = rgb(i, 0, 1-i),
lwd = 2, add = T, n = 400)
}
legend("topright", legend = seq(0.1, 0.9, 0.1), lty = 1, xpd = T,
col = c(rgb(seq(0.1, 0.9, 0.1), 0, 1-seq(0.1, 0.9, 0.1))),
title = expression(sigma), lwd = 2)
5 卡方分布
n个互相独立且都服从标准正态分布的随机变量平方和服从卡方分布(Chi- ),即
记为。称为卡方分布的自由度。
stats中的相关函数有:
dchisq(x, df, ncp = 0, log = FALSE)
pchisq(q, df, ncp = 0, lower.tail = TRUE, log.p = FALSE)
qchisq(p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE)
rchisq(n, df, ncp = 0)
概率密度函数关于的变化图象:
curve(dchisq(x, 1), 0.5, 20, col = rgb(0.1, 0, 0.9),
lwd = 2, n = 400)
for(i in seq(0.2, 0.9, 0.1)) {
j = 10*i
curve(dchisq(x, j), 0.5, 20, col = rgb(i, 0, 1-i),
lwd = 2, add = T, n = 400)
}
legend("topright", legend = seq(1, 9, 1), lty = 1, xpd = T,
col = c(rgb(seq(0.1, 0.9, 0.1), 0, 1-seq(0.1, 0.9, 0.1))),
title = expression(n), lwd = 2)
6 t分布
若服从标准正态分布,服从自由度为的卡方分布,
则服从t分布( t )指数分布,记为。称为t分布的自由度。
t分布的自由度越大,越接近正态分布。
stats中的相关函数有:
dt(x, df, ncp, log = FALSE)
pt(q, df, ncp, lower.tail = TRUE, log.p = FALSE)
qt(p, df, ncp, lower.tail = TRUE, log.p = FALSE)
rt(n, df, ncp)
概率密度函数关于的变化图象:
curve(dt(x, 1), -5, 5, col = rgb(0.1, 0, 0.9),
lwd = 2, n = 400, ylim = c(0, 0.4))
for(i in seq(0.2, 0.9, 0.1)) {
j = 10*i
curve(dt(x, j), -5, 5, col = rgb(i, 0, 1-i),
lwd = 2, add = T, n = 400)
}
legend("topright", legend = seq(1, 9, 1), lty = 1, xpd = T,
col = c(rgb(seq(0.1, 0.9, 0.1), 0, 1-seq(0.1, 0.9, 0.1))),
title = expression(n), lwd = 2)
7 F分布
若和分别服从自由度为和的卡方分布,
则服从F分布(F ),记为。和称为F分布的自由度。
stats中的相关函数有:
df(x, df1, df2, ncp, log = FALSE)
pf(q, df1, df2, ncp, lower.tail = TRUE, log.p = FALSE)
qf(p, df1, df2, ncp, lower.tail = TRUE, log.p = FALSE)
rf(n, df1, df2, ncp)
概率密度函数关于的变化图象:
curve(df(x, 2, 5), 0, 3, col = rgb(0.1, 0, 0.9),
lwd = 2, n = 400)
for(i in seq(0.3, 0.9, 0.1)) {
j = 10*i
curve(df(x, j, 5), 0, 20, col = rgb(i, 0, 1-i),
lwd = 2, add = T, n = 400)
}
legend("topright", legend = seq(2, 9, 1), lty = 1, xpd = T,
col = c(rgb(seq(0.2, 0.9, 0.1), 0, 1-seq(0.2, 0.9, 0.1))),
title = expression(n[1]), lwd = 2)
概率密度函数关于的变化图象:
curve(df(x, 5, 2), 0, 3, col = rgb(0.1, 0, 0.9),
lwd = 2, n = 400, ylim = c(0, 0.7))
for(i in seq(0.2, 0.9, 0.1)) {
j = 10*i
curve(df(x, 5, j), 0, 3, col = rgb(i, 0, 1-i),
lwd = 2, add = T, n = 400)
}
legend("topright", legend = seq(2, 9, 1), lty = 1, xpd = T,
col = c(rgb(seq(0.2, 0.9, 0.1), 0, 1-seq(0.2, 0.9, 0.1))),
title = expression(n[2]), lwd = 2)
8 分布
逻辑斯蒂分布( ),又称增长分布。其
概率分布函数:
概率密度函数:
stats中的相关函数有:
dlogis(x, location = 0, scale = 1, log = FALSE)
plogis(q, location = 0, scale = 1, lower.tail = TRUE, log.p = FALSE)
qlogis(p, location = 0, scale = 1, lower.tail = TRUE, log.p = FALSE)
rlogis(n, location = 0, scale = 1)
标准分布的累积概率函数和概率密度函数:
curve(plogis, -10, 10, col = "blue", lwd = 2)
curve(dlogis, -10, 10, col = "red", lwd = 2, add = T)
限时特惠:本站持续每日更新海量各大内部创业课程,一年会员仅需要98元,全站资源免费下载
点击查看详情
站长微信:Jiucxh